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ABSTRACT

SOME ASPECTS OF NOISE ANALYSIS OF
INTERFEROMETER SPECTROMETERS

/57;}
This paper analyzes the appearance and distribution of
noise on a spectrum obtained by a Fourier transformation of
an interferogram which was the source of the spectrum and

noise.

This is accomplished through a discrete formulation by
use of sampling theory and statistical methods. As a
consequence of this formulation, a noise comparison of
conventional spectrometers and interferometers is readily
obtained which verifies that Fellgett's advantage does hold

for interferometers with non-background limited detectors.
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The purpose of this pa.per is to a.ualyze the statistica.l cha.racter-
~istics of noise exiuting on a apectra. when . the spectra' home been o'ota.ined
- by means of a two-’beam :Lnterferometer apectrometer. In this analysis

the distribution of noiae associated with a spectrum obta.ined by a

, " Fourier transfom of an mterferogram will be derived. Also, it will be
e shown that the use of an interferometer spectrometer has a -+M signal-to~
noise advantage mrer' a conventional spectrometer when the detector used
is non-background l:l.mited, )l 'be:lng the number of resolvable spectrel

components. This a.dvantage in si@al-to-noiae ratio;( is. commonl;r referred

to os Feugett'l adva.ntage.

THE INTERFEROGRAM AND ITS TRANSFORM
A considerable mumber of ..papers ha.ve""been written on the inter-
ferometer spectrometer; . consequexrt],v, the interferometer and its basic

| theory will 'be discusaed here on.ly to the extexrb needed for orientation. (’f‘ e‘é l -2)

SR
i

Assume that an interferometer :ls illumine.ted by a monochromatic
coherent source of conetant mtensity. : tmxen,‘ the interference :Lntensity
vave 1s I(t) = I (\-\—cosz’wﬂ | |

.

 vhere TRAT .‘.'. £ “!.";-. ) e 2:'\‘"{: 4-‘__ G/ 27 ¥ ‘aV/C g
S T & the Tt m‘eﬁ&t‘t Al e, wavelewgtl O*Q lt‘{“‘ ¢is Hhe velcily of liglt and
| ,

and LV is the velocity of the :Lnterferometer.mimr. For heterochromatic

. rediation the interference va:ve becomea "




o :in(}) is zefo.‘

.; 2
- o DR -
It)= S,}(@f‘*fc"s otlge. o L W

)

This intensity wave 1s mciderrt on a detector; thus, . the ouq;ut of tb,e

detectar is proportional to (1) and is of the form

et) = 'c-\—“god(w)/ cos cwt+ (;S(w)] dw - (2)

The right hand term of (2) is then essentially an electrical analog of

the original optical electric field strength scaled down in frequency by

the factor ¥ . The phase amgles (W)  will be zexro, provided imput

intensity fluctuations do mot occur, all system parameters a.ré,].inear and the

propexr time origin"is esta.bliéhed. mhe desired spectrum is obtainmed from the
the

Fourier transform of ; non dec term of the interferogram equation (2), v

the transform may be exyressed as

' e o
’3‘ Y.GC*:)J,-"- ECw)'—'je&)cos%tdt + jye&) sidwtdt C(3)
: » ‘ oo .
where the first and second integ:rals transform the ev‘en a.nd odd parts of

-e(t) respectively- In pa.rticula.r, 1f the phase a.ngle ¢(C0) =0
. for all” & m (3), thehe(t) is an‘even function and the second mteg-al

el e e
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~ DISCRETE FORMULATION

. In smrel wmost spectra observed ¥ill be continuous. Howover,

Fourier transfoma.tion spectroscopy may be expressed 1n a discrete fom

_ as well as the more familiar :lntegral representation. For the purpose
T of this paper the discrete formxlation ‘has sever&l advantages and wil.l

: " thexrefore be used 1n the :t’ollawing analysis. ‘ f'1 -

Sampling Theory shows (see, for example, Reference 3) that if a

s . function 18 time-limited to T seconds (1.e., the function is zero et all
- polmts outside an imterval T seconds in 'dura.tion) and comtains megligible
! " ”*‘_ frequency components grea.ter than B cycles per- second, then the ction

e (Le. veconsivue ‘
(a.nd therefore its Fourier trensform) may be completely determined 'by 28T .

@ 'sampleb taken inm the time doms.:l.n at intervals of 1/23 seconds® or in the

_l' | zi";frequency domain. at interve.ls of l/T cycles per second from =B to +B. ;
I sampling theory is used @ then one may write Equation (1)
- Tws Z 'Ia‘( \+jcosb’wz.t) | L w
‘ N s.;ﬁ-.-‘?f!‘aff":f N .-:z'zr ‘? = 0/7\ e avfe
Vhere °£’”::1";’:‘L ,k ..knn ﬁ wb A \v’ N .
. " D l ‘ ! ?
| Equation (2) 'becomes - . e
euc) C+ ; db cos ﬁ’wu’c +¢..) e
. R

sampling rate may range from 2(1‘ - £327 to h(fa - i'l depe

.- Refer to Theorem x, page 5 Referenc .5 & ﬂ 2 = 1

*If a frequency band from f to f3 13 employed where n&# 0, then the n‘\mwum .

" .provided that sampling theory is correctly applied, the formilas of g
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% true detector aigm s not (5) bt s eT(t ), “here

, 5 : instead of

0

/ 6

lowtr cw,,t-d"

where ua,)kf-ﬂ'h'l(/'r, k t‘ ‘tzﬂ '°+BT A.£ /ﬁB, + /QB
o e(Jg) ewl R

"'\/Q

Several o‘bservations shou.l& be ‘made a.t this po:l.zrt with regard to

-

“the seneralitv o (’+) and (5) First, owing to physical limitations of -H«e |
o m : E .. . .

instrument, (h) holds only for o Limited observation time T. Hence, the o

h (1)
eT&) e(&)h&) wdt k&) {o Clsewheve.

. and e(t), 1is given by (S)Qf?'However, it may be shown that the Fourier
' 'tra.nsfom of the tnmcatéd wave may be o'bta.ined by mdtiplying the‘real‘
- and’ imagina.ry amplitudes of the tneansform of e(t) for frequency‘c by

SIN: wT(,C-an) + sm ’YT(-F-\-T-CL)
’h’ (-{-‘ b‘.FL), - ’Y<-C+T‘Fu)
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A .which .uuld be the case-1if St/ were uot Yime-limited.
1 .

‘Furthermore, the an;plitude con;ponents ’ dx. , ‘of Equation (5) are
B ‘proportional to the smplitudes or the ‘magnitude of the Fourier

.+ trensforn at ‘the samplina points w‘-"‘ awe /T 1seey

di= "' \"} ['.ETC“C)]\ = 2L | (8)

‘ :—.‘.‘A-'-:»E'.’,.'_'.where e dackev 2 a ren
A PPENS kecaute. equalioa (6) iy Ha fomu of o, Foonen
A "‘ﬁ.‘._‘s“"“c‘” Sanes M%P‘&tw - o d\ﬂévtcl %a faclor of 2, in du dc(*m/'w o the Series

Secondly, the generality of. representing the interference wave iclents )
(1) by, using a discrete sum of M terms to cover the contiuum of J‘““‘tﬂ“'

. onsidered .
P frequencies fl to fM needs to be expiained. Essentially, the mechanism

i """ of the interference process and 1ts. detection 18 one of compressing end
‘ translating the spectrum of optical frequencies 'into a wave, enf(t ), with
: ’ a spectrum of frequencles say from O to B cps, which may be in the audio

o p . fréqueney range. This is accomplished by mapping the intensity pattern
| g " of the optical interferogram into its electrical representation eT(t)
T exawi A g

o " K point which requires n then is, how good will Be the

;o oe,
i representation of the desired optical spectrum if it is obtained from

the Fourier tre.nsform of e']’.'(t ), which is both time-limited (T sec.),
' approximately 'band-limited (B cps )\ and represented by a discrete number
of independent terms. The answer to this question will be given later

.in this paper, where it is shown that the number of resolvable components p
. M, required to: represent the tme Optical spectrum of a continuum of '

g i ‘_ ‘ frequencies f]_fto/ fu 1s B’.I!. Since the signsl e-p(t) may 'be cOmpletely

oy |
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'-repreeented by 2BT independent date,'according to sampling theory, Gt
L ‘ the summations of (4) and (5) completely describe the desired optical -
_ | spectrum within the resolution determined by eT(t) when the source under .

vo'bsenration consists of a continuum of frequencies. It should be noted f“

‘ that BT independent amplitude date and BT independent phase data are

 required to completely,specify e}‘(t )y but the phase information is

et
DR .

deleted in the computation of the W of the Fourier transform.

TRANSFORMATION OF ADDITIVE NORMAL‘ INTERFEROGRAM NOISE

As indicated inthe previr.vuai section;. an interferogram is a time
record whose Fourier transform gives the spectral data of the observed
'source. Any noise in the time record is redistributed when the Fourler
transfomationis.perfomed. There has .been some confusion as to how

.8uch a transformation gffects the noise in the Bpectrum, as compared with
° \]

e conventionel speétrometer. Inthe following section it wili be shown .tha.t-,"

o computer program

although the noise is redistributed in a different form with different

statistical parameters P the signal—to-noise re.tio per spectral element
of a spectrum derived from a.n iuterferogram does exhibit Fellgett'
advantage.’ , ’ ' B

To determine the effect orx tl.xe epectrum of noise. appearing on the

time function, first consider the noise probability demsity function and

b © .how it transforms. :'In doing this, it will be necessary to assume that

' the process does not. {ntroduce additional noise power. This essumption

18 reasonable in practice, since the discrete formnlation is poseible by -

" sampling theory, thua ellowi.ng the operation to e perfonned by a digital



Due to detector noise (ref. 4, 5) every amplitude sample of the
interferogram €4{t) will be measured with some uncertainty, say

€1 for the i*h sample. ‘l‘hen the resultant interferogram will be
er(-t] - e.,.' (t) + €t (9)

where ej{t) 1s the true signal and & (t) is the noise, or in a

sampled form

e + .
e‘. - e‘. q’- 6[/ (‘-_IJ,_Z/ /i BT(lo)

Assume that the random noise €i(t) belongs to a normal probability

distribution wit',h zero mean. This statistical characterization
will include all random normally distributed noise that is

additively superimposed on the true interferogram.

The probability density function for any error Ei is given by

] _er
P(e) de = -C_ZTT_’U‘)'/‘ 6XP{ 2q-tj de (11)



2 ¢ '
vhe e S = variance of €. Tt can be verified thet the veris

Ll WheX varsl e % . Can he war CQAT TOe Yarlance;
" S 2 1s equal to the average power of the amplitudes of ¢(t). Thus,
07 equation (11) expresses the utetilticl of the time domain noise,

- e (t) on the interferogran eT(t). Fow that the time domain noise to-
i ‘be considered has 'been formulated, ‘the goal will be to ate.tistieally

.;"", cha.ra.cterize this noise in the tra.nefomed spectrum.

ol S b
'Jgt ;'3»3_, '
= .

e'l‘(*') expressed 1n terms of :lts eample form maar be transfomed by'

‘ 1 vhere . LQC(UJ)—‘ 5 g_g‘r (AB) CO&( 2"13') . ' RO (12)

. . . P 1 )

e fo'cw>='f§ Yg; s aw (26)

ot ' . : G : -

' For a glven frequeucy € (w) ia & weighted sum of all the € so that by

- the use of the centra.l limit theorem (reference b ) 1t can be shown.Zor

Sl ORI : s
eI At b i

-large BT that the random va.r:la.'bles o and B a.re :lndependent and the
probability distributiona of the amplitudes : f*a (w) and 5 (w) a.re 5 

represented ’by

o Pco_o: -




s fa i :
Since T 'x(t) was assumed U0 be raxdom moise, the €. are statistically

i independent and consequently/) 2 48 ‘not a function of frequency. The

o - the "requency samples is given 'DY (reference 5)

N spectrum, '

or
where

. R i - v
and oo .
X ceoa L [

. relation betveen the variance of tha time llmpl.l and the variance of

t

2.

/o 3 3<.\ eT (%) iff‘ B G" - (11&)

Furthermore, the Joint die’cri'bution of a and p 1is ‘the bi-variate nomal

TR

distribution

P@m) doxc% ,Z’Eq?e"? {u mfdm’ﬁ (15)

These expressions descri‘be the Btatistical behavior of noise a.lone
" irrespective of the true aigna.l, 'but these fom:lations readily permit

- the 'characterization of the.transfornxed noise_ superimposed. on the true

'..'", P o . ",._‘ !

Cily

: From (9) the Fourier trensfom of the Ireceived‘ time record eT(t)
’Eb tefcfn ?p x; e-r &)_‘) + 91 Le c+)j

fEcw\ = Eugr €<w) oy

3 '-
"

(16)

E(/-U) o a(wyl- J b(co)




P L , .
i . N .- B
t i Py B ;
B U IR - C10)]
X SRR . , ,
RERY Loy Phe ] P
- P ’ S
' - . .
. o . 1
i
! ‘ g
: i
1
i

" From (8) and (16) the spectrum of mtensity as a function of frequency

: becomes for the general ca.se

|25 = \La‘“’*““"ﬂ*°U°Cw>+ﬂ<w>:1} Can

The probability distribution of the Va.ria'ble \' EU—O)\ where the transform

e i of the nolse is described sccording to (15) will be representative of the

it way the noise is distributed over the spectrum.

For each sample, a (Wk) and b"(wk) aref fixed and \Q_E__._éﬂ)\ can

: therefore be considered by means of the va.r:la.‘blea
S Tx= & (arw) T

M2 (k) R -
“From (35) zu,g)o\xgﬁ =4 q),exp{ .L_Y_(x-sa,) @-;a) _]jclxéaj

L : w}rere f' (p < (L> > =

L then' - dq,d)(" \“dv‘de

. 1\;x ‘4 : * : 1 . ‘
Therefore’ fm (n) ih s . 2, . . l - C "

\ :**{-' ;_ | _9'___ | - G

Wit the change of vmables p.. (X +(d=)'/9.—- PE(“’)] 6 fa.w ":}/)(

- XECX;%)&(A‘;"& w’Pcr e\c\rde R
S &::Wa =y Pz U+ ) (,b-) 4-&\(‘00%9"&&{’3% eﬂ}drAe-
SOO_‘ P{ .?q)"<r‘*‘/1/“)§:t ( )O\Y‘ ; -

(19)
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the argument, is 1_ :

Beldr= §o e login '-"; G

) . a 3- L ' } ‘. .‘
vhere-I (E) 2—— ( / C”’ ']) is the zero—order Hyper’bolic :
_ -Bessel functiom. An altema.te fom of Io(z), useful for- large Values of

T, Cz)

The properties of the density f‘unction (20) ma.y be described 'by its
’ .1, ,.'v ; v B ‘

" moments which are given by S o ,

&t 7 (zq/ )%r\(mf\)expfwa ( +; ’-29’) .",‘._"(22)

: N
(Reference i) where M is a confluent hypergeometric ﬁmction.

Inpa.rticular, .

<~c > //’+ :up e (3
.and for. no signal yresent (only noise) ‘ | :

ey (-5'13/"

(an)

The expression (20) represents the proba'bility distri‘bution of the

 amplitudes oi’ the spectra which includes the true spectrum and the super-

imposed naise. The‘pe.rticular shape of the distri'bution for a.ny amplitude




S T Tinald

12

(any sample in the frequency domain) is dependent upon the

magnitude of the true signal. That is,

U= {[a(vvﬂ * [b(“’ﬂ } (25)
Figuré 1 shows in normalized form Y P(r)vs 79’ for sevefa.l

values of ,U/V/ .

For purpose of interpretation ( 20) can be closely approximated
in two particular cases: First for ,u O and for small i over the
range of re<p , then ( }

» and .
r { } Adr
P(Y).d)’ ~ s CxXP 2_')"

This is the Rayleigh distribution presented in normalized form in

(26)

Figure 1 with /u/ ¢ = 0. The significant point is tha{: the
distribution for zero signal is not centered about zero. In fact
the peak for the Rayleigh distribution occurs at r = (// . The
first and second moments are given by ( 24 ) as is shown in

Figure 1 by the curve-for %: ‘O.

Consider the second case where the amplitude of the true
spectrum is large compared to s Leeo, U 77¥ . For large

z from the series form of (21) I (z) = 62/(277;) %, so that

(20) can be approximated by ) exXp - {
P(")d"z 790; 6/’0{,—2——;1(774413)] (1"/>/3

= G (8% exe [~ (sl 1

which further closely approximates a normal distribution

p(rl 0[" S 2n/V")I/" erpP {*E‘Lﬁ(k'ﬂ)? dr

wd



backgroxmd limited. :

NOISE COMPARISCN

Equation (20)and its approxination (27) characterize the statiistics

of the transiorm of the 1m’aer16r0gram which includss signal plus norma 1
(Gaussian) noise. Now e comparison of interferometers and conventional

spectrometers with respect to errors caused by normal (Gaussian) noise

 Cav ke made

witi-feldow, The WRVisenwhichowillebedconsidered s that which origi-
nates in the detector. S "

Detecobor noise is gene'rally ascribed to two sources; that which is

“intrinsic in the detector itself and that ‘which is generated in the detect=-
- or by the statiatical fluctvations of the incident photons. Detectors

whose intrinsic noise is less than that due to incident photon fluctuat-

o ‘ion are known either as photon limited or backg'round_ limited detectors.

In the cese of the conventional spectrometer the signal to noise ration

is not a function of the source of the detector noise. This in not the

. case however,’ for the interferometerv spectrometers If the interfero-
© . meter detector is background-limited the detector sees simultaneously,
~ the total radiation from all of the spectral elements while the detecta

of the conventional spectrometer :Ls affected only by the radiation from .

one spectral element. 'l'hvs ’ “the interfevometer detector nolse is M timss

greater, Only the non-background—limited detectors will be considered at

this time ’ with the background-lﬁmited detectors being treated later.
The  former class of detectors is both ].erge and important being as all

detectors used in the infrared spectral region are considered to be non=

"‘Q'

To compare the noise errors of a oonventional and interferometer

- spectrometer it is necessary to assume the same scan time, T, for the

conventional spectrometer as for t‘he Mterferometer and the same number

,,l 1 t

o u “z'?g'shﬂ

[Then the time a]lowed for the

* ° -
VR e s et o,

e mgy
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measurement of each resolved spasctral ellementv is 1/B and the required
Therelore,

bandpass is apprmc.’mately B cycles per second. 'Phe-us the noise can be
imited to a bandwidth of B and the probability distribut n of the

" noise is characterized by the same 0-2 as used in equatién (11). Thus,

the amplitude error per spectral element for the conventional case obeys

the statistics expressed by (1_1). Also, one may write in an analogous

manner to (10) Sy= 83+ € 4 where, si is the true signal amplitude and

) E s 1s the superimposed noise error.‘ Hence, forth statistical representat- )

ion fer each sample (amplitude) Si the true aigna.l Si = p, is fixed and

can be considered as the mean, so that the probability density function '

of the amplitudes 'is

P& dS

By way of comapariaon 8f amplitude errors for the interferometer spectro-

b
'

cs—m g’"dé | __c:a)

]

meter and the conventional spect.rovmevtervsv, note the resul’os (20) and {29).




1k

and in particular (28) and (29) for large signal values. The
variance indicates the spread of.thg distribution and the smaller
the variance the moi'e pesked the distribution becomes. From (18)

| = (@F) T

Hence it can be concluded that the amplitude noise error per spéctral
element fo;' the interferometer belongs, with & given probability,
to a smaller amplitude range. That is, the time domain amplitude
errors are redistributed into amplitude errors in the frequency
domain where the most probable amplitude range has been decreased.
This is illustrated in Figure é, where arbjitrarily BT was chosen to
be 100. Later it will be shown that BT is the number of resolvable

components in the spectrum.

On the basis of these results, the noise powers per spectral
element# for the conventional spectrometers and the interferometer J

can be computed and compared. Any computed spectral amplitude
is of the form Y = - / 7 [er(l‘)j’
T

Y
and the corresponding true amplitude is pr ___7_2___ ( a*+ b l), t2

The mean square error (()"'M)l)is then the average noise power,

Nla, vhich may be expressed as

Vit (r-a)D = Lrwp=24&r2u+ i

-

using equation (23),

M= 224 (“"(7) (30)



The mean of ¥y KT >y has been computed from (@) and NIQ

" evaluated as & function of true iiml,/J The results are plotted
| in Figure 3. It 1s seex that the noise power ia & function of the

signal and that the ma.x:lmm noise power, N;[ max, occurs at,u = 0

* and in texms of variamce .
N’E me = 2(’} _ ,
_ The minimm noise power occurs where ,U/q/ - \ » in vhich case

‘ N'I it - .87 w Furthemore, for Iarger ,(//(’/}, I\]I quickly
approaches L\J ar@e]ating ‘P to the va.rianee (or average noise power) of

-

e e
the time amplitude noise 'by (ﬁ) giveg R ey

| N.I~="5?, R Lo (38)

.
-

In the time record the amplitude nolse power was 0-2. ‘Since the same

\ 3
addi'bive noise occurs directly on the spectrum of the eonventiona.l case,

2

.theng< is the averageé noise power per apec‘bral element agsuning the ~same

scan time T and 'bandwidth .:B in 'bath cases.

It is desired now to prove that ‘.B'.l‘ 18 equal to M, .where M 1is the
pumber of spectral components ‘that an interferome‘ber is able to resolve.
Suppose that a source emits energy ‘of two frequencies £, end f,. The

in‘berferoma‘ber produces an. outpuh whose Fourier transform is of the form

?’1 e_(t) = ""d sin 7 ), Tal am. 7§ H-B) N,
\erOF =0 Sy R e .

oW m\q he ?0&\*106 ey, le ‘
( .' Acgording to the Rayleigh critgrion,

the two apectra.l :unea are ;lndependenb and resolvable when the maximm




16

of one coincides with a firét zero of the oti1er. In the above
example, then, the frequencies f and 'f2 are resolvable if

5{:= lc' --f;).: ;;,L, If the spectral range of the source is from
-.fa” to £y a.nd the resolution is Jf , then the number of

distinguishable independént Spectral eiements isM = £%:_'_;ﬁ. .

In the frequepcy mapping of the interferometer ,Fb_ .F" « B ahd & § = -:;:'
so that M = BT.' Thus, from (29) the noise voltage for an inter- .

ferdmeter is ‘
Me ® VM (32)

From this it may be seen that the noise voItage of an interferometer:
is l/mtirﬁes the noiée voltage for a spectrometer. Since the

signal levels are the same for both, this results in a rN—I_‘ signal-
fo-noise advantage for the interferometer, which has been called
Fellgett's advantage. This advantage holds for non-background N
limited detectors. If the detector is background limited then

the mean rate of photons (Ir7 incident on the detector and therefore
the noise power# is M times as great for the interferometer as for

the conventional spectrometer. Thus, (32) for intefferometer

noise voltage becomes N = U and Fellgett's advantage is

cancelled.



e
=3

SUMMARY

The prdbability'disfributions which govern the noise

. superimposed on the signal.for both the ihterferometer and éonventional
| spectrometef‘aré derived and compared. For interferoﬁeters) the
varignce, and hence the spread of error-amplitudes per spectra}_-‘
element, is less than for the same ﬁime observation and same

" resolution for the.conventional cases Furthefmore, the noise

power in the spectrum is shown to be dependent on the signal,__ '
T

: 2 ‘ L
and varies from 27 to approximately e and hence the
v ' ‘

signal-to-noise voltage ratio comparisons show an advantage of

from J757§1to approximately } M for the 1nterferqme#er.l
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